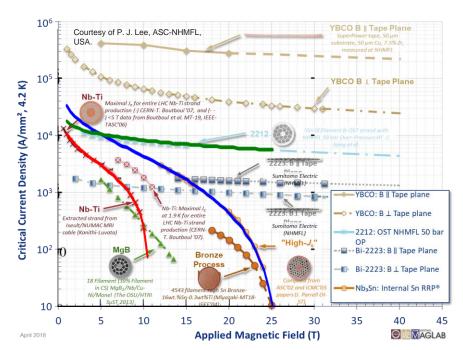
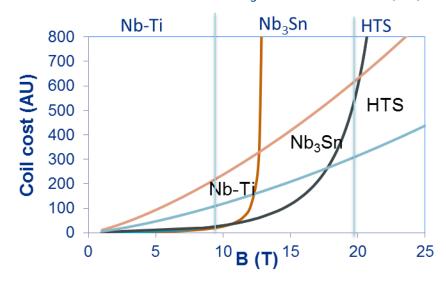


Challenges of High Field Magnets

Alexander V. Zlobin Workshop on Muon Driven Colliders 26-27 January 2022


Outline

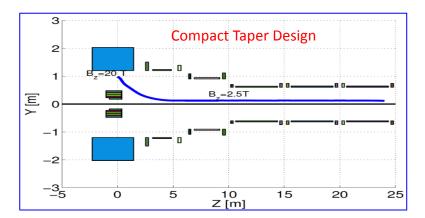
- Introduction
- Practical superconductors
- MC key systems and magnets
 - Front End, Cooling, Acceleration, Storage Ring and Interaction Regions
- High field magnet challenges
- Summary

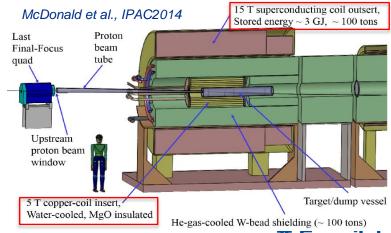


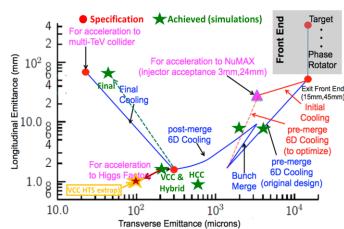
Practical superconductors

Practical SC materials for SC magnets include <u>appropriate</u> <u>critical parameters, their reproducibility in long lengths,</u> <u>mass production and affordable cost</u>.

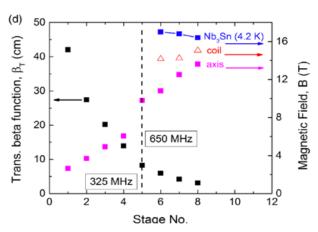
Coil cost ~ coil area x SC cost Relative SC cost: Nb-Ti/Nb₃Sn/HTS = 1/5/20(10)

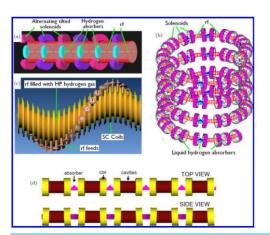



Boundaries are not fixed, they depend on superconductor and magnet technology costs.


Front End - Target & Capture Magnets

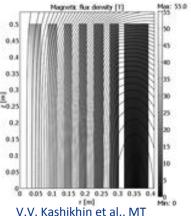
- System functions
 - Produce muons from protons on target
 - Prepare muon beams for the ionization cooling
- 20 T Capture Solenoid
 - 15T SC outsert: ~2 m ID, 3 GJ, 100 t
 - 5 T Cu insert: ~0.3 m ID
- Solenoid decay channel
 - taper from 20 T to ~2.5 T
- Technology
 - Detector or fusion solenoids
 - CMS: 6 m ID, 4 T, 2.6 GJ
 - ITER CS: 0.6 m ID,13 T, 6.4 GJ
- Issues and challenges:
 - Severe radiation environment
 - Possibility of using HTS for the insert
 - Large aperture-high field for Nb₃Sn
- Continue DS to identify issues and develop solutions




Muon Cooling Systems

Muon Cooling

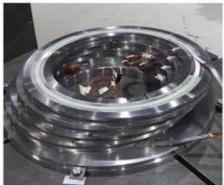
- Energy dissipation in materials with RF reacceleration
- Operation in a solenoidal field
- Aperture reduces from ~1m to 50 mm

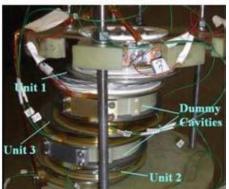


6D cooling

- (a) HFOFO snake
- (b) Guggenheim RFOFO
- (c) helical cooling channel (shown without a large outer straight solenoid)
- (d) rectilinear RFOFO
- B_{op} range from 5 to 20 T
- Aperture range ~50-10 cm
- HTS magnets in 6D Cooling

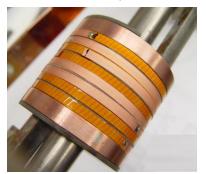
Final Cooling:


- RF cavities between solenoids
- Bores ID of ~50 mm
- Cooling performance is proportional to B
- Ideal range 50-60 T
 - >30T acceptable

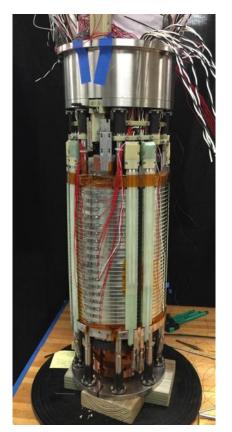

■ Fermilab

Cooling channel technology development

V. S. Kashikhin et al.TAS 2007



M. Yu et al., FERMILAB-CONF-11-265

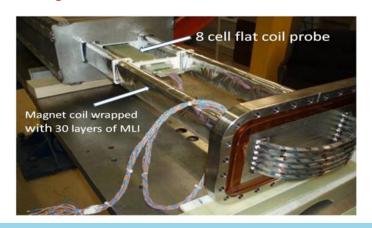


400-mm 4 T Nb-Ti 4-coil and 50-mm YBCO HS models

V. Lombardo et al., TAS 2010

4 Double Pancake YBCO insert coils

Issues and challenges:


- High fields
- Possibility of using HTS for the insert
- Large-aperture high-field for Nb₃Sn
- Use of accelerator magnet technologies


World Record 32 T LTS-HTS Hybrid Solenoid (NHFML)

Acceleration: Fast Ramping HTS Magnets

- Present baseline Rapid Cycling Synchrotron
 - magnets operating at ~400 Hz with Bmax>1.5 T
- dB/dt = 289 T/s with field amplitude ~0.5 T has been demonstrated using HTS dipole model (H. Piekarz, 2021)
- Next step increase B_{max} and dB/dt, study magnet and system limits
- Higher field amplitude iron free (warm iron) designs

1 – Magnet, 2- Current leads, 3- Power supply, 4 – Control electronics, 5- LHe lines

For the 10 T DC dipoles - see section SR and IR magnets below

H. Piekarz et al., MT-27

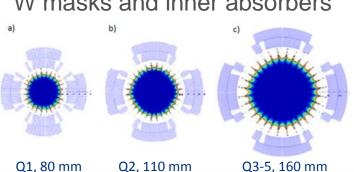
Muon Collider SR and IR

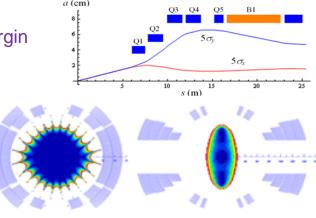
- MAP Optics Designs for
 - 1.5 TeV CoM
 - 3.0 TeV CoM => 6.0 TeV CoM
 - Higgs Factory (125 GeV CoM)
- Magnet Characteristics
- Large apertures to accommodate thick shielding around beam
- IR combined function magnets to mitigate v radiation

- High fields required for MC call for advanced accelerator magnet technologies beyond traditional Nb-Ti magnets limited to B_{op}~8 T
- Nb₃Sn magnets baseline approach
 - B_{nom}=10 T
 - large operation margin >20%
 - mature magnet technology (B_{op}<12 T) thanks to GARD and LARP work during past two decades
- Conductor present technology limit
 - 1 mm high-J_c Nb₃Sn strand
 - wide 40-42 strand Rutherford cables

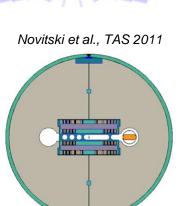
1.5 TeV MC: Arc and IR Magnets

Arc magnets


20 mm × 10 mm beam aperture


Open mid-plane 10T D and large-aperture 200 T/m Q relatively low operation margin ~12% good field quality only in ~30% of coil aperture large dynamic heat load in D ~25 W/m (~5% level) IR magnets

- B_{des}=14-15 T with 2-layer coils
- 20-30% (Q) and 45% (D) operation margin


W masks and inner absorbers

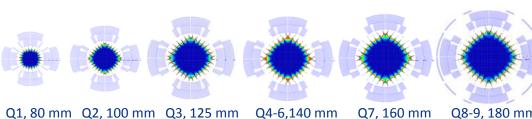
B1, 160 mm

1.5 TeV MC (FF doublet)

V.V. Kashikhin et al., IPAC2012

Open mid-plane in D does not work well

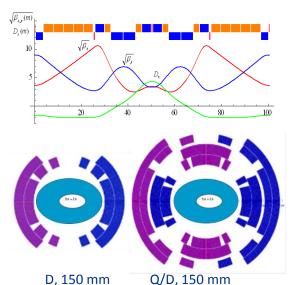
3 TeV MC: Arc and IR Magnets

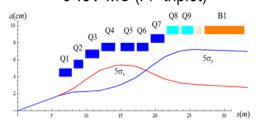

Arc magnets

- 150 mm aperture D and combined Q/D
- Elliptical liner with shifted 56 mm × 26 mm bore
- B_{op} =10.4 T with ~30% margin at 4.5 K => 2-layer coils
- B_{op} ~8-9T and G_{op} ~80T/m with ~20% margin (B_{coil} ~18 T) at 4.5 K => nested Q/D with 4-layer coils

IR magnets

- $B_{op}=8 T (D), B_{op}\sim11 T (Q)$
- Aperture 80-180 mm
- B_{des}=14-15 T with 2-layer coils
- 20-30% (Q) and 45% (D) operation margin


Tungsten masks and inner absorbers


Q7, 160 mm

Q8-9, 180 mm

B1, 180 mm

125 GeV HF: CCS, MS, Arc and IR Magnets

CCS, MS and Arc magnets

- coil ID 160 mm (Arc) and 270 mm (MS, CCS)
- B_{op}=10 T with ~30% margin at 4.5 K (B_{max}~14 T) with 2-layer D coils
- G_{op}~36 T/m with ~60-80% margin at 4.5 K (max B_{coil} ~15 T) with 2-layer Q coils

IR magnets

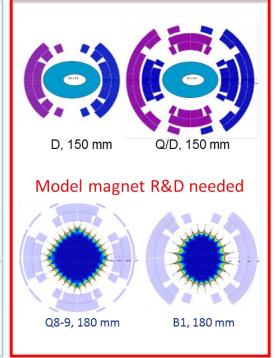
W masks and inner absorbers

GeV HF (FF quadruplet) IR magnet aperture is large 320-500 mm (!) Factory: MAP design B_{des}~17-18 T requires 6-layer coils for quench with a single IP protection and to limit maximum coil stress 20-50% operation margin in IR magnets N.V. Mokhov et al., ArXiv, JINST, 2018 Q3, 500 mm Q2,4, 500 mm B1, 500 mm Q1, 320 mm 1/26/2022

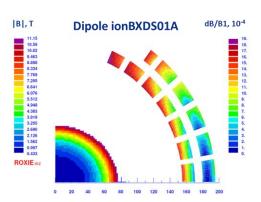
D1, 270 mm

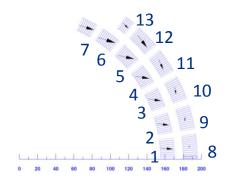
D2, 160 mm

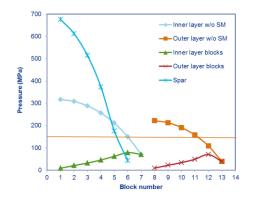
Q1, 270 mm

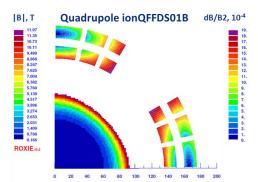

Q2, 160 mm

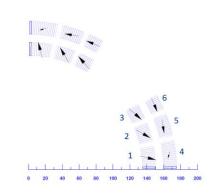
Nb₃Sn Magnet model R&D

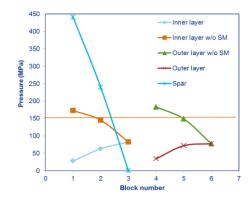



R&D issues: mechanical structure, quench performance, field quality, quench protection, etc.

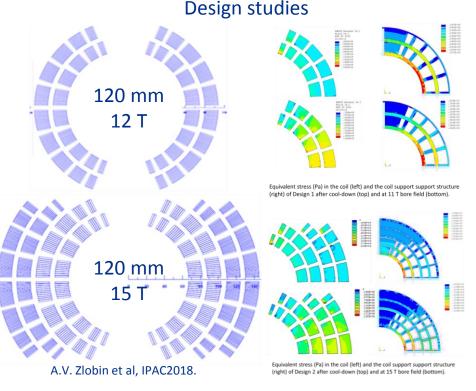



Stress Management needed


Coil ID, mm	310
Iron yoke ID, mm	200
Coil current, kA	14.5
Bore field B0 _{max} , T	9.48
Coil field B _{max} , T	11.47
Load line margin, %	72.6
Temp. margin @1.9K, K	6.02
Stored energy @B _{max} , M	J/m 1.21



Coil ID, mm	270
Iron yoke ID, mm	180
Coil current, kA	17.5
Field gradient G _{max} , T/m	74.39
Coil field B _{max} , T	11.98
Load line margin, %	80.3
Temp. margin @1.9K, K	4.75
Stored energy @G _{max} , MJ/m	2.90



Stress management on the coil level is critical

synergy with MDP on SMCT technology development and demonstration

Stress Management for high-field large-aperture magnets

Technology development

Coil practice winding and impregnation

Coil mandrel production by additive manufacturing

3D printed parts for the coil mandrel: plastic-left and 316stainless steel - right

I. Novitski et al, MT-27.

- US-MDP 120 mm ID 12-15 T dipole demonstrators with Nb₃Sn SMCT coils
 - results in 3-4 years

Higher Field Magnets

- Higher fields in MC SR => higher L or lower Proton Driver power
- Magnet target parameters:
 - B_{op}=15-20 T (Bmax~14.5 T Fresca2 and MDPCT1, aperture 60-100 mm)
 - 20% margin => B_{des} =18-25 T !!!
- 15-20 T magnet issues
 - Large stored energy and Lorentz forces => Quench protection and stress management
 - Cost ~ coil width)
- Magnet R&D directions
 - Increase Nb₃Sn and HTS conductor J_E
 - Develop high-current Nb₃Sn and HTS cables
 - Solve stress management and quench protection problems
 - Demonstrate quench performance and field quality for large-aperture Nb₃Sn and HTS magnets

Summary

- Front end: 20 T solenoid detector or fusion technology, design studies
- Magnet cooling 50 T solenoid
- Acceleration fast cycling dipole, increase B and f
- Magnet studies for 0.125, 1.5 and 3 TeV MC SR are complete by MAP
 - SR and IR magnets for 6 TeV machine small extension of the 3 TeV concepts
- 10 T Nb₃Sn magnets *MAP baseline approach*
 - magnet technology is available from LARP-HL-LHC and MDP
 - focused R&D for large-aperture Nb₃Sn dipoles and nested Q/D
- Higher field magnets
 - 15 T Nb₃Sn magnets with coil ID~20(40) cm, B_{des}~18 T new class of Nb₃Sn accelerator magnets with stress management
 - 20 T HTS/LTS magnets (10 T HTS insert) with ~20 cm bore, B_{des}>25 T new magnet technology based on HTS => significant R&D effort is needed!!!

HTS technology